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It has previously been shown that the no-slip boundary condition leads to  a 
singularity a t  a moving contact line and that this forces one to  admit some form of 
slip. Present considerations on the energetics of slip due to shear stress lead to a yield 
stress boundary condition. A model for the distortion of the liquid state near solid 
boundaries gives a physical basis for this boundary condition. The yield stress 
condition is illustrated by an analysis of a slender drop rolling down an incline. That 
analysis provides a formula for the frictional drag resisting the drop movement. With 
the present boundary condition the length of the slip region becomes a property of 
the fluid flow. 

1. Introduction 
The three-phase contact line, where liquid, solid and gas meet, is encountered 

frequently in everyday experience and is of concern to many areas of science, 
Movement of this contact line causes considerable embarrassment to a fluid 
dynamicist ; for, when the contact line is in motion with respect to the solid surface, 
the usual no-slip boundary condition of viscous flow gives rise to a non-integrable 
singularity in the surface shear stress. Thus, if the liquid and gas are immiscible, so 
that the contact line maintains its integrity, motion of the contact line would be 
resisted by an infinite force. As Huh & Scriven (1971) aptly describe it, ‘not even 
Herakles could sink a solid if the physical model were correct, which it is not’. 

The stress singularity is an immediate consequence of the inconsistency of the no- 
slip condition a t  a line where two surfaces in relative motion meet. The no-slip 
condition says that particles of fluid adjacent to each surface assume the velocity of 
that surface, so the velocity of particles a t  the line of intersection between surfaces 
in relative motion must be multiple valued (Batchelor 1967, p. 226; Dussan V. & 
Davis 1974). 

From another point of view, one can regard the moving contact-line singularity as 
arising when equations derived for continuous motion (the Navier-Stokes equations 
plus no-slip imply that within the fluid motion is continuous, and that at a solid 
boundary, motion of the fluid is continuous with that of the solid) are applied to a 
situation in which the continuum motion is discontinuous. Dussan V. & Davis (1974) 
observe that if one allows a singularity a t  the contact line, there is no inconsistency 
between the discontinuous motion and the no-slip condition. However, the 
singularity takes the form of a physically unacceptable infinite shear stress, so it is 
not allowable. That the motion a t  a moving contact’ line is discontinuous is made 
clear by the observation that as a solid is submerged into a liquid, portions of the 
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solid which were initially adjacent to the gas phase will subsequently be adjacent to 
the liquid phase, assuming the gas and liquid to be immiscible. Hence, there are 
points on the solid surface and in the liquid which initially were a t  finite separation 
and subsequently have infinitesimal separation: see Dussan V. & Davis (1974) for a 
more lengthy discussion of the kinematics. 

The point of view that the singularity arises from applying inherently continuous 
governing laws to a discontinuous process leads to the conclusions that a fundamental 
modification of these laws must be made, and that singularities will arise in other 
cases of discontinuous motion, such as the break up of a capillary jet into drops, 
unless similar modifications are made. In  the present case, it will be supposed that 
thc discontinuous motion can be incorporated by allowing slip of the fluid relative to 
the solid boundary: it will be assumed that the Navier-Stokes cquations do not 
break down. The purpos' of the prevent paper is to present ideas about the form 
which a modification of the no-slip condition might take. 

It will be further supposed here that slip can be described by a relation between 
slip velocity and surface shear stress. Such a constitutive equation will unavoidably 
involve undetermined constants, requiring experimental evaluation. The goal of the 
present paper is to arrive a t  a constitutive relation, and thereby to suggest the nature 
of the required constants. To this end we will consider. admittedly on a simplistic 
level, the mechanics and energetics of the slip process. We are led to infer that slip 
is a consequence of cohesive liquid-liquid bonds yielding within a thin layer near the 
solid surface. Consequently, our constitutive relation can be described as a yield 
stress boundary condition. 

2. Survey 
Analyses of moving contact lines have invoked several boundary conditions to 

eliminate the contact-line singularity, the most popular being the linear slip-shear 
relation (Lamb 1932, p. 586) 

A7 us = -. 
LC 

Here us is the slip velocity, 7 is the surface shear stress, ,u is the liquid viscosity and 
h is a slip length. Although this boundary condition has been applied to the eontact- 
line problem by Huh & Scriven (1971),  Huh & Mason (1977) and Hocking (1976), 
among others, it has not been arrived a t  by fundamental considerations, and indeed 
many of its practitioners have questioned its suitability. In  an attempt to justify the 
linear model ( l ) ,  Hocking (1976) proposed that on a microscopic scale slip does not 
actually occur. Rather, at an advancing contact line the liquid-gas interface might 
lay down on surface roughness elements, or jump between them, producing the 
appearance of slip a t  a large distance above the roughness. However, if slip did not 
occur, then displacemcnt of the gas from the roughness elements by an advancing 
contact line would cause a singular stress, as we have previously described. Thus, in 
the surface roughness rationale, the contact-line singularity is simply transferred to 
the scale of the surface roughness, but is not resolved. Hocking recognized this 
difficulty. 

Equation (1) receives its most fundamental justification when applied to slip a t  a 
gas-solid boundary: for this reason, i t  will be referred to  as a 'gas dynamic' model. 
Near a stationary solid surface, randomly moving gas molecules collide with the 
surface and lose any directional bias they may have had. However, during the time 
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between collisions, an imposed shear stress can transmit a mean momentum to the 
gas adjacent to the surface, and in a rarefied gas this can result in an appreciable slip 
velocity. Kinetic theory leads to the conclusion that h is proportional to the mean 
free path of gas molecules. 

It is well known that kinetic theory does not describe the liquid state. The density 
of a liquid is more nearly that of a solid than that of a gas. Consequently, stresses are 
transmitted through cohesive electrostatic forces, rather than through momentum 
transfer by random collisions. Thus, the concepts which underlie the gas-dynamic 
model (1) are of limited relevance to the liquid state. Despite its popularity, the gas- 
dynamic model is presently lacking in foundation. 

Various other models have been used to eliminate the contact-line singularity. For 
instance, Dussan V. (1976) prescribes a priori  a slip velocity as a function of distance 
to the contact line. Greenspan (1978) and Dussan V. & Chow (1983), among others, 
assume that contact angle is a known function of contact-line velocity, and 
determine the contact-line motion as a perturbation to a quasi-static solution. This 
approach avoids the contact singularity by delaying it to higher-order in the 
perturbation solution. It is also likely that the empirical dependence of contact angle 
on contact-line velocity is, at least in part, determined by velocity slip (Lowndes 
1980); in this sense these analyses presuppose the solution. 

Another model which warrants mention because of a similarity to the present 
model, is Huh & Mason’s (1977) free-slip condition. Huh & Mason assume that 
within a given distance of the contact line the liquid slips freely over the solid, so that 
7 = 0. Elsewhere a no-slip condition is imposed. This model produces a singularity 
where the boundary condition changes discontinuously from us = 0 to 7 = 0. Thus, 
7 rises to co before dropping discontinuously to zero. Although Huh & Mason’s free- 
slip model is substantially different from the present both in form and justification, 
i t  agrees with our conclusion that, to a large extent, the appropriate boundary 
condition should impose a criterion directly on the shear stress, with the slip velocity 
being determined indirectly. In  the present theory, the surface stress is imagined to 
increase as the contact line is approached, until a critical level is reached a t  which the 
liquid begins to slip. The stress saturates at this level, with further increase being pre- 
empted by slipping of the liquid along the surface : this proposed behaviour is loosely 
analogous to the phenomenon of yield in metals. In  the present model the location 
a t  which the liquid begins to slip is not prescribed, it is simply the location where the 
surface stress reaches its critical level, and this is a property of the fluid flow. The 
shear stress and slip velocity are continuous, and no singularity arises. 

3. Energy considerations 
When a wetted surface is pulled out of a liquid, its free energy is increased. This 

increase is produced by cohesive bonds between the bulk liquid and an adsorbed 
surface layer being broken. I n  the surface-tension model, an adhesive force between 
liquid and solid is associated with their line of contact, and the increment in free 
energy of the emerging surface can be attributed to work done against this force. Any 
slip velocity ought also to be associated with cohesive bonds being broken, in this 
case by the large shear stress existing in a neighbourhood of the contact line. The net 
rate at which shear stress does work on the surface is 
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FIGURE 1. Illustrating the slip-stress relations. -, relation ( 5 ) ;  ---, relation (6) 

where the integral is over the submerged part of the solid. Surface slip increases the 
rate a t  which mechanical energy is dissipated by the amount of equation (2). In some 
sense this mechanical energy must be that expended in overcoming cohesion and 
causing slip. 

A consideration of local energetics, along the lines of the previous paragraph 
suggests how to model slip. I n  the slip region the shear stress must break cohesive 
bonds, thereby enabling the liquid molecules at the surface to  move with a finite 
velocity with respect to  the solid. The local rate per unit area at which work is being 
done is ru,; the local rate per unit area a t  which bonds are being broken will be 
denoted N ;  and the energy needed to break a bond will be denoted E,. The work of 
breaking a bond must be done by shear stresses, so the local energy balance is 

ru, = E , N ,  (3) 

assuming slip to be parallel to stress. If A, is a measure of bond spacing, then the 
number of bonds per unit area is N = l/A,2. I n  order to maintain bond spacing, the 
characteristic distance which layers slip when bonds are broken must also be A,. The 
slip velocity is then 

us = (NA,)A,2. (4) 

Using (4) in (3) gives ru, = ?-,us, ( 5 )  

where 7, = Eb/A:. On rough surfaces, 7, will be increased by a factor of ri, where r is 
the ratio of the actual area of the surface to  its area resolved in the plane of the mean 
surface. 

As a moving contact line is approached, the surface stress increases. As long as 
r < rc, equation (5) requires the no-slip condition, us = 0. However, when 7 reaches 
the level r,, equation (5) is satisfied for arbitrary us. Thus, we are led to the idea of 
a yield stress, 7,. The constitutive relation (5) is illustrated by figure 1 : when 7 < 7, 

the no-slip boundary condition is satisfied. When 7 reaches 7, the liquid begins to 
slip, preventing further increase of 7. 
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FIGURE 2. Extension of the significant structure model to  include a solid-liquid interface. The 
vacancy layer is not meant to  be void in the liquid ; rather, i t  represents a layer in which adhesion 
to  the solid weakens cohesive bonds. 

4. The significant structure model 
The constitutive equation ( 5 )  describes an abrupt change in boundary condition 

from us = 0 to 7 = 7,. One might expect this to be an approximation to an actual 
smooth curve of slip versus stress. A smoothing effect which the above simplistic line 
of reasoning ignores is the random thermal energy of the liquid. In  order to 
incorporate this effect and to arrive a t  a more realistic slip-stress relation, we adopt 
the ‘significant liquid structure ’ model of Eyring & Jhon (1969). Because the present 
discussion is by necessity intuitive, a graphic model such as that of Eyring & Jhon 
helps to fix ideas. 

In  this model, the molecular configuration of the liquid state is considered to be 
that of a solid with a high density of missing molecules. The disorder created by 
missing molecules makes the liquid fluid. The missing molecules leave holes which 
move randomly through the liquid, in analogy to the random thermal motion of 
molecules in a gas (Eyring & Jhon, figure 3.1). This random motion of holes makes 
a small gas-like contribution to liquid constitutive properties. To this extent, the 
slip-stress relation might be a linear combination of expressions (1) and ( 5 )  (or (6) 
below) ; however, we expect the gas dynamic contribution to slip to be rather small. 
In  order to examine the yield stress contribution to slip in greater detail, we must 
extend the picture provided by the significant structure model to include the 
influence of an adjacent solid surface on the structure of the liquid phase. 

In the significant structure model the liquid phase is a mirror image of the gas 
phase. To create this mirror image, gas molecules are replaced by holes and the void 
between gas molecules is filled with liquid molecules (figure 2 and Eyring & Jhon 
1969). 

Where a gas contacts a solid, a layer of molecules will be adsorbed on the surface. 
The spacing between gas molecules in this adsorbed phase is orders of magnitude 
smaller than that in the bulk of the gas phase (in fact, the surface number density 
of adsorbed molecules can approach that of the solid phase) and the adsorbed 
molecules are held tenaciously to the solid. Strict application of the mirror image 
approach would involve replacing the layer of adsorbed gas molecules by a layer of 
holes, held feebly by the surface. This is not a likely extension of significant liquid 
structure, but it provides guidance. 
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Beneath a wetting liquid phase, the solid will again be covered with a layer of 
tenaciously adsorbed molecules. I ts  strong adhesion to  the surface is likely to reduce 
the cohesion of this layer to overlying layers of liquid. This weakened cohesion might 
be thought of as a ‘vacancy layer’, as is illustrated by figure 2 .  The vacancy layer 
is not a true void; the spacing between layers of molecules (which is exaggerated in 
figure 2) is imagined to be smaller than the molecular diameter. The significance of 
the vacancy layer is that it represents, in an idealized way, a weakness of the fluid 
phase at  which stress concentration can result in slip. It is important that this layer 
exists, because it allows large stresses to be relieved by surface slip without the bulk 
of the fluid departing from Newtonian constitutive laws (or other continuum 
behaviour). 

The vacancy layer is held from slipping by molecules which randomly span the 
layer. The illustration in figure 2 shows liquid molecules bridging the layer, but 
asperites on the solid surface could also impede slippage. These bridges serve to 
concentrate the surface shear stress. If the average spacing between bridging 
molecules is A, and the molecular diameter is a ,  and if a stress 7 is acting on the bulk 
liquid phase, then the shear stress will typically be amplified to ( A , / u ) ~ ~  a t  these 
points. 

Of course, we recognized that irregularities, or asperites on the surface can have an 
important influence on slippage and can affect the critical stress. Therefore, the ideas 
of Hocking (1976) have some relevance. However, the present point of view is that 
some real form of slip (as opposed to  the apparent slip in Hocking 1976) must occur 
a t  the surface, and that the ideas described above have some bearing on that 
phenomenon. 

In the Appendix, an analysis similar to those in Eyring & Jhon (1969) is used to 
argue that the slip relation might generally take the form 

> (6) = B ((7/TC-1))/8 

where B and 6 are dimensionless constants and 6 4 1.  6 is proportional to 
temperature. Expression (6) is a smooth version of expression ( 5 )  : when 7 < T,, us is 
exponentially small; when 7 N 7,, slip becomes significant, and the slip velocity 
becomes quite large when 7-7,  + 8. Despite the fact that  (6) has been derived by 
considering a specific conceptual model, the form of this equation does not make 
explicit reference to that model and probably could be arrived at  by other means. 

Figure 1 compares (6) to (5). When 6+0  these two formulae become equivalent in 
an asymptotic sense. Thus, expression (5) can be regarded as an approximation 
in two ‘outer regions’, with expression (6) describing an ‘inner region’ which 
interpolates smoothly between them. For many applications we expect (5) to be a 
suitable boundary condition, although the smooth boundary condition (6) is 
available when needed. 

5. Illustration: Motion of a slender drop on an incline 
To illust,rate the model (5 ) ,  it will be used to determine the speed with which a 

slender drop slides down an incline under the influence of gravity. We consider a two- 
dimensional drop and make the lubrication approximation (Huh & Scriven 1971 ; 
Hocking 1981). Indeed, our analysis follows that of Hocking (1981), except that  we 
use the yield stress boundary condition ( 5 )  instead of the gas-dynamic condition ( 1 ) .  
This change in boundary condition leads to  a substantially different mathematical 
problem. 
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FIGURE 3. Defining sketch for analysis of a two-dimensional slender drop rolling down an  
incline. 

The x-coordinate is normalized by the half length, L,  of the drop, so that the drop 
meets the surface a t  x = & 1. The advancing and receding contact angles (figure 3) 
8, and 8, are assumed to be known and independent of contact-line velocity: in the 
lubrication approximation, the average contact angle, e = t (0 ,  + 0,) must be small. 
Lowndes (1980) argues that the true contact angles are independent of drop speed; 
experiments showing dependence on speed are supposed to measure an angle at some 
distance from the wall and not the true contact angle. However, because contact-line 
motion involves breaking of cohesive bonds, it is conceivable that contact angles 
might depend on speed. If so, such dependence could be allowed in our analysis. 

In  regions of length 6, and 6- on the liquid side of the contact lines, the stress 
boundary condition pduldy = r, on y = 0 is applied, while in the central part of the 
drop u = 0 on y = 0 (see figure 3). It will be assumed that any shear stress exerted 
on the drop by the gas phase is negligible. Thus, a t  the gas-liquid surface of the drop 
the shear stress pduldy must vanish. 

In  the lubrication approximation (Batchelor $4.8), the horizontal momentum 
equation reduces to 

a2u ap 
ay ax ,uT = --pg sina, (7)  

where a is the inclination of the surface to the direction of gravity. In  the no-slip 
region the solution to (7) with the above boundary conditions is 

(aPlax-pg sina) (y2-2yh(x)) 
2P 

U =  9 @ a )  

where y = h(x) is the surface of the drop. In  the yield stress regions, 1 f x  < 6, - (see 
figure 3) 

where u,(x) is the slip velocity. Comparing ( 8 b )  to ( 8 a )  shows that 

in this region. 
We seek a solution for a drop which is moving with constant velocity c. Then 

dependent variables will be functions of x and t only in the combination x-ct, so the 
equation of mass conservation is simply 

[udy = ch. 
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Substituting (8a )  into (10) yields 

3PC = pg sin a - __ 
ap - 
ax h2 

in the no-slip region, while ( 8 b )  yields 

in the slip regions. 

drop across the surface. In the slender-drop limit this balance becomes 
Along the surface of the drop, the surface tension force must balance the pressure 

d2h 
dx2 

u- = -P .  

If pgL2 cosalu is sufficiently small, then the component of gravity normal to the 
incline has insignificant effect on the drop shape. Then with (9) and (1 1) determining 
P the above equation gives 

d3h 
dx3 

gh2-+pg sin ah2 - 3cp = 0 

in the no-slip region, - 1 + 6- < x < I - S,, and 

d3h 
dx3 

vh-+pg sinah-7, = 0 

in the end regions 1 f x  < 6,. 
At the junctions between the  regions, the surface shear stress must be continuous. 

This is equivalent to requiring that the slip velocity (12) vanish a t  x+ = 1 - 6, and 
at  x- = - 1 + 6-. Thus, with h, - defined as h(x,), 

Equation (14) and the conditions h( f 1)  = 0, dh(l)/dx = - O A  and dh( - l) /dx = 8, 
provide boundary conditions to equations (13). I n  order that the solution to (13a) 
matches smoothly to  the solutions to  (13b), dh/dx and d2h/dx2 must be continuous 
a t  the junctions, x, and x-. 

The equations will be non-dimensionalized by introducing 

where H is the non-dimensional drop height in the slip regions and H is the height 
in the no-slip region. (Recall that x has already been scaled on L.) 

In  general the critical shear stress must be large, or else slip would commonly be 
observed : for instance, measurements of Poiseuille flow would not agree so well with 
the no-slip condition (Lamb 1932). Therefore, T, is a large parameter, and it is 
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appropriate to ignore gravity in the slip region (T, 9 K ) .  Then problem (13) reduces 
to solving 

H 2 H " ' + K H 2 - C = 0  (-1+6- < x < 1-6+), (16a) 

(-1 < x < - l + S - ) ,  
(1-6+ < x < l ) ,  

HH"' - T, = 0 

where primes denote differentiation with respect to x, with boundary conditions 

8 ( + 1 )  = o ,  8 ' (+1)  =Tl-E, (16c) 

where e = (0,-0,)/(0,+0,) and with 

H +  - = C/T,. 

It will evolve that when T, is large, C is small (although only like l/ln (T,)). Therefore 
it is suitable to expand the solution to  (16a) for small C. For simplicity, we 
follow Hocking (1981) and also consider the case of K 4 1. Then to a first approxi- 
mation (16a) reduces to HI" = 0. Solving this and then calculating the lowest-order 
correction gives 

H =  +(1-x2)-KQ(x3-x)+C[(1-x) In( I -x) - ( I+x)  I n ( l + x )  

-$( 1 - x ) ~  In (1 - x) + &( 1 + x)2 In (1 + x)] + c1 $2 + c, x + c, + O(C2, C K ) ,  (17) 

where cl, c, and c, are constants of integration. 
This solution for H ,  and its first two derivatives, must match with the solution to  

(16b) a t  x+ = f (1 -a+). 6, and 6- are small parameters O(T;'/ln (T,)). Therefore it 
is suitableto evaluate-( 17) and its derivatives a t  x+ - keeping only the largest terms 
in S+: - 

H+ = S+(l-~K)+~c,+c,+c,+CS,  - - h a + ,  - (18a) 

(186) H' + = T1-~K-C1n6+fc ,+c2 ,  - 

+C H" - -+c + -  1' 
- 6 ,  - 

From (18a) and H +  - = C/T, 

Zc, = - C ( S + l n 6 + + S ~ l n ~ ~ ) + ( l - ~ K ) ( S ~ - S + )  = O(S+ - lnd,); 

hence, c2 can be dropped from (186). From (18b) and (16c) c1 is O(1) and so can be 
dropped from (18c). Thus (18) can be replaced by 

where H has been replaced by H to show that (19a-c) will be applied to the solution 
in the slip regions. 

We must solve (16 b )  in the two end regions, subject to the boundary conditions 
(16c) and matching conditions (19). The differential equation (16b) is third-order, so 
the two end regions combined allow six integration constants. Additionally, the end 



166 P. A .  Durbin 

region lengths 6, and the drop speed C are unknown. These nine unknowns are 
determined by t6e four conditions (16c) and the five conditions (19). 

Unfortunately, no closed-form general solution to (16b)  seems to exist. A first 
integral is 

(20) HH” - L L ’ 2  = T, ( x+ - 1)-4(1 + e ) 2 .  

Evaluating this a t  x = +(1 -a+), - using (19a) and (19c) yields 

H ;  - = ~ [ ( l f ~ ) ~ + 2 T , 6 ~ f C ~ / ( S ~ T , ) ] ~ .  

Substituting this into (19b) yields 

C In 6, 6- = -$K + (1 + e)2 + 2T, 6, +-r c2 - - [ (1 - E)’-~T,  6- -~ C2 1’. ( 2 2 )  
6, T, 6- T, 

Equation (21) determines C once 6, - are known. However, a full solution to (16b) is 
required in order to determine 6,. 

An approximation for 6, can %e derived by expanding the solution to (166) for 
small T,6+ (which i s  formally O(l/lnTc) if l--e is O(1)) .  In  this approximation the 
solution to (166) i s  expanded as 

where z = xT1. Here p, and p- are constants. Equation (23) must satisfy conditions 
(19) a t  z = f6,. Thus, to lowest order in a,, - equation (23) substituted into (19c) 
gives 

and substitution of (23) into (19a) gives 

Using (23) in (19b) gives 

2(5K-e) = -C ln6+6- (25) 

in place of the general formula (22) .  (Notice that (25) can be obtained directly from 
(22) by dropping the last two terms inside each square bracket.) Here 1 -+ -In 6+6- 
has been used for consistency. After substituting (24), (25) becomes 

Equation (26) implicitly determines the drop specd C as a function of the tangential 
component of gravity K ,  once the contact angle hysteresis e and yield stress T, are 
given. This equation expresses a balance between the external force acting on the 
drop and the frictional drag resisting movement of the drop. 
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6. Stick slip, and order of magnitude estimates 
Expression (26) is similar to the formula obtained by Hocking (1981) using the gas- 

dynamic boundary condition ( l ) ,  if his slip length h is identified with C/Tc(1-e2)i. 
Note, however, that h is regarded as a fixed constant, while here the slip length is a 
property of the flow, depending for that reason on the speed of advance and on the 
contact angles. 

In order for a continuum model to apply, the slip length must be greater than a 
molecular diameter, a ;  thus in dimensional terms c > 7,u(0,8,)~/p. This lower 
bound on c suggests an intriguing explanation for 'stick-slip ' motion of contact lines 
(Huh & Scriven 1971) : if the driving force is insufficient for c to be greater than its 
lower bound the contact line must move in spurts, a t  every instant either being 
stationary or moving with speed greater than 7, a(0, 8,)i/p. In  other words, the 
critical stress is required to move the contact line, and if this level of stress is not 
reached far enough from the contact line, then the contact line cannot move. 
Microscopic surface roughness probably plays a role in stick-slip behaviour, so it 
might well be more appropriate to regard the length a as characteristic of roughness, 
rather than of molecular dimensions. 

In  cases of extremely slow contact-line movement, surface diffusion of the liquid 
phase probably becomes important. In that case, the present mechanical con- 
siderations would not apply and one would expect the contact line to move smoothly. 
It might be hypothesized that the yield-stress model becomes applicable a t  the onset 
of stick-slip behaviour, and that the slip region (dimensional) length 8, - L is then 
comparable to A,. Hypothesizing thus, we have 

Elliot & Riddleford (1967) found that when c N 2 mm/min a drop of water 
receding from a polyethelene surface moved in a stick-slip fashion. If we use this 
value and take E,  v 5 kcal/mol as a reasonable value, then with p = lo-' g/cm s-', 

A, N cm. 

Although this is a very crude estimate, and could very well be wrong by an order of 
magnitude, it gives an idea of the scales being considered. If this value of A, is used, 
we find 

This estimate seems low, but it is also quite unreliable because a factor of two 
decrease of A, causes an order of magnitude increase of 7,. 

7. Further comments 
(1 -a+) in the above 

analysis, its derivative with respect to x is discontinuous. The discontinuity can be 
alleviated by invoking equation (6) to smooth the transition from no-slip to yield- 
stress boundary condition. Usually this would not be necessary, for the slip boundary 
condition was forced on us by a non-integrable shear stress singularity when no-slip 
is applied, and the yield-stress condition has removed that singularity. For most 
purposes the discontinuous derivative of surface stress can be tolerated. 

Although the surface shear stress is continuous a t  x = 
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A slightly more troubling feature of the slip boundary condition is that an 
integrable (logarithmic) singularity of the pressure can be shown to remain a t  the 
contact lines, x = 1. This singularity is not a consequence of the slender-drop 
approximation, and occurs in solutions using boundary condition (1) as well (Huh & 
Mason 1977). The origin of the pressure singularity is the discontinuity in surface 
shear stress a t  the contact line on the gas-solid side this stress is zero (or some non- 
zero value for a viscous fluid), while on the liquid-solid side it is finite. If necessary, 
the pressure singularity could be removed by introducing a thin region near the 
contact line in which the critical stress relaxes to zero (or in which values on either 
side of the contact line adjust). The considerations leading to (5) took no account of 
lateral inhomogeneity near the gas-liquid interface ; presumably such consideration 
would justify yield-stress relaxation. However, the surface tension model represents 
the inhomogeneous region by a sharp interface, so it may be inconsistent to allow it 
finite thickness in tthe boundary condition : one may be forced to  tolerate the pressure 
singularity if a continuum model is maintained. 

The idea that observations of stick-slip behaviour might be used to estimate slip 
parameters was suggested to me by Professor S. H. Davis. 

Appendix 
Arguing as in $5.2 of Eyring & Jhon (1969), we suppose that an energy barrier 

E,  must be overcome for slip to occur and that the rate of slipping is described by 
an Arrhenius type equation. If the macroscopic slip velocity is a consequence of 
molecules in the vacancy layer slipping a distance As, then the work done by the 
shear stress is rA,3 cosB per microscopic slip, where 0 is the angle between the stress 
and the direction of slip. Because of random thermal motion, microscopic slip is not 
parallel to the imposed macroscopic stress. We assume that slip takes place in a plane 
parallel to the surface. With these assumptions, the rate of slip is given by 

where T = temperature, k = Boltzman constant, h = Planck constant and f, is a 
partition function for the vacancy layer. It is through the energy barrier to slipping 
that the cohesive forces are incorporated. 

The slip velocity is the slip distance, A, cos8, multiplied by the rate of slip (A 1), 
averaged over angle : 

where I l  is a modified Bessel function. Assuming that E,/kT % 1, the slip velocity is 
exponentially small when rh:/kT is of order unity. When rA:/k!P %- 1, expression 
(A 2) can be approximated by 
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where /3 = lc!l'/A:. The pre-exponential in (A 3) typically has a large magnitude. In 
order to obtain a smaller pre-exponential factor, expression (A 3) will be rewritten in 
terms of the fluid viscosity. 

If El is an energy barrier to molecules randomly jumping into holes in the bulk 
liquid (Eyring & Jhon, equation (5.20)), fi  is the liquid phase partition function, A, 
is a characteristic spacing between liquid molecules, and 2 is the number of nearest 
neighbours to a hole, then Eyring & Jhon's analysis gives 

for the viscosity ,u. Here (V - Vs) /V is the ratio of the number of holes to the number 
of molecules plus holes per volume of liquid. A similar ratio might be incorporated 
into expression (A 3) if necessary. If we define 

',-El 

4 
7, = ___ 

then (A 3) and (A 4) give 

7, as defined here most likely is positive, because El is the barrier only to a molecule 
falling into a hole in the bulk liquid, while E,  is the barrier to a cohesive bond to the 
adsorbed layer being broken. Because us is exponentially small when 7-7, < -/3, 7 

has been replaced by 7, in the denominator of the pre-exponent in order to make 
(A 6) valid for all 7. Expression (A 5) has the form of (6), with 6 = /?/7c (< 1) .  
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